Given the function:
𝑓
(
𝑥
)
=
1
2
𝑥
𝑇
𝑄
𝑥
−
1
𝑚
∑
𝑗
=
1
𝑚
(
1
+
(
𝑏
𝑗
−
𝑎
𝑗
𝑇
𝑥
)
)
Suppose that
𝑏
∈
𝑅
𝑚
and
𝐴
∈
𝑅
𝑚
×
𝑛
stack
{
𝑏
𝑗
}
and
{
𝑎
𝑗
𝑇
}
, respectively (rows of
𝐴
are
{
𝑎
𝑗
}
). Derive the mathematical expression for the gradient and Hessian and show how it can be calculated using the Python snippets provided.
R2l2ZW4gdGhlIGZ1bmN0aW9uOgoK8J2RkwooCvCdkaUKKQo9CjEKMgrwnZGlCvCdkYcK8J2RhArwnZGlCuKIkgoxCvCdkZoK4oiRCvCdkZcKPQoxCvCdkZoKbG9nCuKBoQooCjEKKwpleHAK4oGhCigK8J2RjwrwnZGXCuKIkgrwnZGOCvCdkZcK8J2RhwrwnZGlCikKKQpTdXBwb3NlIHRoYXQgCvCdkY8K4oiICvCdkYUK8J2RmgogYW5kIArwnZC0CuKIiArwnZGFCvCdkZoKw5cK8J2Rmwogc3RhY2sgCnsK8J2RjwrwnZGXCn0KIGFuZCAKewrwnZGOCvCdkZcK8J2Rhwp9CiwgcmVzcGVjdGl2ZWx5IChyb3dzIG9mIArwnZC0CiBhcmUgCnsK8J2RjgrwnZGXCn0KKS4gRGVyaXZlIHRoZSBtYXRoZW1hdGljYWwgZXhwcmVzc2lvbiBmb3IgdGhlIGdyYWRpZW50IGFuZCBIZXNzaWFuIGFuZCBzaG93IGhvdyBpdCBjYW4gYmUgY2FsY3VsYXRlZCB1c2luZyB0aGUgUHl0aG9uIHNuaXBwZXRzIHByb3ZpZGVkLg==