#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned ll
#define ld long double
typedef vector<int> vi;
typedef multiset<int> mi;
typedef multiset<ll> mll;
typedef vector<ll> vll;
typedef vector<bool> vb;
typedef vector<string> vs;
typedef set<ll> sll;
typedef vector<vector<int>> _2vi;
typedef vector<vector<ll>> _2vll;
#define all(v) ((v).begin()), ((v).end())
#define sz(v) ((ll)((v).size()))
#define vinp(v, n) \
for (ull i = 0; i < (n); i++) \
cin >> (v)[i]
#define printv(v) \
for (auto i : (v)) \
cout << i << " "
#define fr0(i, n) for (ull(i) = 0; (i) < (n); (i)++)
#define fr1(i, n) for (ull(i) = 1; (i) < (n); (i)++)
#define fr(i, x, n) for (ull(i) = (x); (i) < (n); (i)++)
#define _CRT_SECURE_NO_WARNING
const ll MOD = 1000000007;
void Bustany() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
#ifndef ONLINE_JUDGE
freopen("./in.txt", "r", stdin), freopen("./out.txt", "w", stdout);
#endif
}
const ll N = 1e5 + 5;
vector<sll> adj(N);
//_2vll adj(N,vll(N));
vb vis;
/*
? Find all prime numbers from 1 to n
? Complexity : O[n * log(log(n))]
*/
vector<ll> sieve(int n) {
vector<bool> isPrime(n + 1, 1);
isPrime[0] = isPrime[1] = 0;
for (ll i = 2; i * i <= n; i++) {
if (isPrime[i]) {
for (ll j = i * i; j <= n; j += i)
isPrime[j] = false;
}
}
vector<ll> primes;
for (ll i = 2; i < n + 1; i++) {
if (isPrime[i]) primes.push_back(i);
}
return primes;
}
void solve() {
vll p = sieve(100);
sll v;
ll i = 0;
string ans;
for (; i < p.size(); i++) {
if (p[i] > 50) {
cout << "prime\n";
cout.flush();
return;
}
cout << p[i] << endl;
cout.flush();
cin >> ans;
if (ans == "yes") {
for (int j = 0; j < p.size(); j++) {
if (p[i] * p[j] <= 100)v.insert(p[i] * p[j]);
}
for (auto s: v) {
cout << s << endl;
cout.flush();
cin >> ans;
if (ans == "yes") {
cout << "composite\n";
cout.flush();
return;
}
}
cout << "prime\n";
cout.flush();
}
}
cout << "prime\n";
cout.flush();
}
int main() {
Bustany();
ll t = 1;
// cin >> t;
while (t--) {
solve();
}
}
I2luY2x1ZGUgPGJpdHMvc3RkYysrLmg+Cgp1c2luZyBuYW1lc3BhY2Ugc3RkOwoKI2RlZmluZSBsbCBsb25nIGxvbmcKI2RlZmluZSB1bGwgdW5zaWduZWQgbGwKI2RlZmluZSBsZCBsb25nIGRvdWJsZQp0eXBlZGVmIHZlY3RvcjxpbnQ+IHZpOwp0eXBlZGVmIG11bHRpc2V0PGludD4gbWk7CnR5cGVkZWYgbXVsdGlzZXQ8bGw+IG1sbDsKdHlwZWRlZiB2ZWN0b3I8bGw+IHZsbDsKdHlwZWRlZiB2ZWN0b3I8Ym9vbD4gdmI7CnR5cGVkZWYgdmVjdG9yPHN0cmluZz4gdnM7CnR5cGVkZWYgc2V0PGxsPiBzbGw7CnR5cGVkZWYgdmVjdG9yPHZlY3RvcjxpbnQ+PiBfMnZpOwp0eXBlZGVmIHZlY3Rvcjx2ZWN0b3I8bGw+PiBfMnZsbDsKI2RlZmluZSBhbGwodikgKCh2KS5iZWdpbigpKSwgKCh2KS5lbmQoKSkKI2RlZmluZSBzeih2KSAoKGxsKSgodikuc2l6ZSgpKSkKCiNkZWZpbmUgdmlucCh2LCBuKSAgICAgICAgICAgICAgICBcCiAgICBmb3IgKHVsbCBpID0gMDsgaSA8IChuKTsgaSsrKSBcCiAgICBjaW4gPj4gKHYpW2ldCiNkZWZpbmUgcHJpbnR2KHYpICAgICAgXAogICAgZm9yIChhdXRvIGkgOiAodikpIFwKICAgIGNvdXQgPDwgaSA8PCAiICIKI2RlZmluZSBmcjAoaSwgbikgZm9yICh1bGwoaSkgPSAwOyAoaSkgPCAobik7IChpKSsrKQojZGVmaW5lIGZyMShpLCBuKSBmb3IgKHVsbChpKSA9IDE7IChpKSA8IChuKTsgKGkpKyspCiNkZWZpbmUgZnIoaSwgeCwgbikgZm9yICh1bGwoaSkgPSAoeCk7IChpKSA8IChuKTsgKGkpKyspCiNkZWZpbmUgX0NSVF9TRUNVUkVfTk9fV0FSTklORwpjb25zdCBsbCBNT0QgPSAxMDAwMDAwMDA3OwoKdm9pZCBCdXN0YW55KCkgewogICAgaW9zX2Jhc2U6OnN5bmNfd2l0aF9zdGRpbyhmYWxzZSk7CiAgICBjaW4udGllKE5VTEwpOwogICAgY291dC50aWUoTlVMTCk7CiNpZm5kZWYgT05MSU5FX0pVREdFCiAgICBmcmVvcGVuKCIuL2luLnR4dCIsICJyIiwgc3RkaW4pLCBmcmVvcGVuKCIuL291dC50eHQiLCAidyIsIHN0ZG91dCk7CiNlbmRpZgp9Cgpjb25zdCBsbCBOID0gMWU1ICsgNTsKdmVjdG9yPHNsbD4gYWRqKE4pOwovL18ydmxsIGFkaihOLHZsbChOKSk7CnZiIHZpczsKCi8qCiA/IEZpbmQgYWxsIHByaW1lIG51bWJlcnMgZnJvbSAxIHRvIG4KID8gQ29tcGxleGl0eSA6IE9bbiAqIGxvZyhsb2cobikpXQogKi8KdmVjdG9yPGxsPiBzaWV2ZShpbnQgbikgewogICAgdmVjdG9yPGJvb2w+IGlzUHJpbWUobiArIDEsIDEpOwogICAgaXNQcmltZVswXSA9IGlzUHJpbWVbMV0gPSAwOwoKICAgIGZvciAobGwgaSA9IDI7IGkgKiBpIDw9IG47IGkrKykgewogICAgICAgIGlmIChpc1ByaW1lW2ldKSB7CiAgICAgICAgICAgIGZvciAobGwgaiA9IGkgKiBpOyBqIDw9IG47IGogKz0gaSkKICAgICAgICAgICAgICAgIGlzUHJpbWVbal0gPSBmYWxzZTsKICAgICAgICB9CiAgICB9CiAgICB2ZWN0b3I8bGw+IHByaW1lczsKICAgIGZvciAobGwgaSA9IDI7IGkgPCBuICsgMTsgaSsrKSB7CiAgICAgICAgaWYgKGlzUHJpbWVbaV0pIHByaW1lcy5wdXNoX2JhY2soaSk7CiAgICB9CiAgICByZXR1cm4gcHJpbWVzOwp9CgoKdm9pZCBzb2x2ZSgpIHsKICAgIHZsbCBwID0gc2lldmUoMTAwKTsKICAgIHNsbCB2OwogICAgbGwgaSA9IDA7CiAgICBzdHJpbmcgYW5zOwogICAgZm9yICg7IGkgPCBwLnNpemUoKTsgaSsrKSB7CiAgICAgICAgaWYgKHBbaV0gPiA1MCkgewogICAgICAgICAgICBjb3V0IDw8ICJwcmltZVxuIjsKICAgICAgICAgICAgY291dC5mbHVzaCgpOwogICAgICAgICAgICByZXR1cm47CiAgICAgICAgfQogICAgICAgIGNvdXQgPDwgcFtpXSA8PCBlbmRsOwogICAgICAgIGNvdXQuZmx1c2goKTsKICAgICAgICBjaW4gPj4gYW5zOwogICAgICAgIGlmIChhbnMgPT0gInllcyIpIHsKICAgICAgICAgICAgZm9yIChpbnQgaiA9IDA7IGogPCBwLnNpemUoKTsgaisrKSB7CiAgICAgICAgICAgICAgICBpZiAocFtpXSAqIHBbal0gPD0gMTAwKXYuaW5zZXJ0KHBbaV0gKiBwW2pdKTsKICAgICAgICAgICAgfQogICAgICAgICAgICBmb3IgKGF1dG8gczogdikgewogICAgICAgICAgICAgICAgY291dCA8PCBzIDw8IGVuZGw7CiAgICAgICAgICAgICAgICBjb3V0LmZsdXNoKCk7CiAgICAgICAgICAgICAgICBjaW4gPj4gYW5zOwogICAgICAgICAgICAgICAgaWYgKGFucyA9PSAieWVzIikgewogICAgICAgICAgICAgICAgICAgIGNvdXQgPDwgImNvbXBvc2l0ZVxuIjsKICAgICAgICAgICAgICAgICAgICBjb3V0LmZsdXNoKCk7CiAgICAgICAgICAgICAgICAgICAgcmV0dXJuOwogICAgICAgICAgICAgICAgfQogICAgICAgICAgICB9CiAgICAgICAgICAgIGNvdXQgPDwgInByaW1lXG4iOwogICAgICAgICAgICBjb3V0LmZsdXNoKCk7CiAgICAgICAgfQogICAgfQogICAgY291dCA8PCAicHJpbWVcbiI7CiAgICBjb3V0LmZsdXNoKCk7Cn0KCmludCBtYWluKCkgewogICAgQnVzdGFueSgpOwogICAgbGwgdCA9IDE7Ci8vICAgICBjaW4gPj4gdDsKICAgIHdoaWxlICh0LS0pIHsKICAgICAgICBzb2x2ZSgpOwogICAgfQp9